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Abstract

Visual object recognition is complicated by the fact that the same 3D object can give rise to
a large variety of projected images that depend on the viewing conditions, such as viewing
direction, distance, and illumination. This paper describes a computational approach that uses
combinations of a small number of object views to deal with the effects of viewing direction.
The first part of the paper is an overview of the approach based on previous work. It is then
shown that, in agreement with psychophysical evidence, the view-combinations approach can
use views of different class members rather than multiple views of a single object, to obtain
class-based generalization. A number of extensions to the basic scheme are considered,
including the use of non-linear combinations, using 3D versus 2D information, and the role
of coarse classification on the way to precise identification. Finally, psychophysical and
biological aspects of the view-combination approach are discussed. Compared with
approaches that treat object recognition as a symbolic high-level activity, in the view-combi-
nation approach the emphasis is on processes that are simpler and pictorial in nature. 1998
Elsevier Science B.V. All rights reserved
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1. Recognition and the variability of object views

For biological visual systems, visual object recognition is a spontaneous, natural
activity. In contrast, the recognition of common objects is still beyond the capabil-
ities of current computer vision systems. In this paper I will examine certain aspects
of the recognition problem and outline an approach to recognition based on the
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combination of object views. The discussion of the recognition problem will be
limited in a number of ways. In particular, it will focus on shape-based recognition,
and it will consider primarily object identification rather than classification. In
general, objects can be recognized not only by their shape, but also based on
other visual cues, such as color, texture, characteristic motion, their location relative
to other objects in the scene, context information, and expectation. Here, I will focus
on the recognition of isolated objects, using shape information alone.

Why is visual recognition difficult? It may appear that the problem could be
approached by using a sufficiently large and efficient memory system. In performing
recognition, we are trying to determine whether an image we currently see corre-
sponds to an object we have seen in the past. It might be possible, therefore, to
approach object recognition by storing a sufficient number of different views asso-
ciated with each object, and then comparing the image of the currently viewed object
with all the views stored in memory (Abu-Mostafa and Psaltis, 1987). Models of so-
called associative memories have been proposed for implementing this ‘direct’
approach to recognition (Willshaw et al., 1969; Kohonen, 1978; Hopfield, 1982).

Although direct comparison to stored views can play a useful role, especially for
the recognition of highly familiar objects, this direct approach by itself is insufficient
for recognition in general. One reason is that the space of all possible views of all the
objects to be recognized is likely to be prohibitively large. A second, and more
fundamental reason, is the problem of generalization, that is, recognizing an object
under novel viewing conditions. Object views are highly variable and depend on the
viewing direction and distance, the effects of illumination direction, shadowing and
highlights, partial occlusion by other objects, and possible changes and distortions in
the object itself. As a result, the image to be recognized will often not be sufficiently
similar to any image seen in the past.

1.1. An empirical comparison of intra- and inter-object variability

The effects of these sources of variation, in particular, viewing position and
illumination direction, were evaluated quantitatively in the domain of face images
(Adini et al., 1997). In the study, twenty-six different individuals were imaged from
a number of viewing directions and under different illumination conditions. The
goal was to compare images of different individuals, with images of the same
individual but under different viewing conditions. In this manner, it becomes pos-
sible to examine whether the differences induced by mere changes in the viewing
conditions are large or small compared with the differences between distinct indi-
viduals. The images used were of males, with no glasses, beards, etc., and with the
hairline covered, taken under five viewing conditions. The first was from a frontal
view, with left illumination (45°),and neutral expression. The other four differed
from the first by changing either the illumination (45° right), the viewing direction
(17° to the right), or the facial expression. The different images were taken by
moving a robotic arm with a TV camera to different locations in space.

To compare the different images, one needs to define a measure of similarity. The
study employed a number of commonly used measures for comparing images. The
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simplest measure used the average absolute difference between the image intensity
levels of corresponding points. The face images were normalized in size, orienta-
tion, and position, before this measure was computed. A more flexible measure
allowed local distortions between the two images: the image intensity value at a
given point was compared not only to a single corresponding location in the second
image, but to all the points within a given neighborhood, and the best-matching
value within this neighborhood was selected. The computation of image differences
also included compensation for changes in overall intensity level and linear intensity
gradients, so that the difference measure became insensitive to these global para-
meters. Another type of difference measure used transformed versions of the
images, obtained by applying to the images various filters, such as difference-
of-gaussians, (DOG) filters (Marr and Hildreth, 1980), Gabor filters (Daugman,
1989), and using directional derivatives of the gray level images (Koenderink
and Van Doorn, 1990). Filtering of this kind appears to take place in the early
processing stages of the mammalian visual system, and it is also often used in
artificial image processing systems. Finally, images were also compared by first
obtaining an edge map from each image, and then comparing the resulting contour
maps. The use of such edge maps is also a standard procedure in image processing,
partly because they are less sensitive to illumination conditions than the original
gray-level images. For each of the different measures, comparisons were made
between the full face images, but also between partial face images, such as the
upper or lower parts.

The main result that emerged from these comparisons is that the differences
induced by changes in the viewing conditions are large compared with the differ-
ences between different individuals. An example is illustrated in Table 1 (after
Moses, 1993), comparing the effects of changes in illumination and in viewing
direction, with differences between individuals, for 11 different faces (F1–F11).

Table 1
Distances between face images

FC IC VP Pairs of faces

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

F1 59 25 21 25 26 24 39 25 22 23 22 17
F2 56 23 16 18 27 25 16 14 16 15 21
F3 56 26 17 27 27 14 15 20 16 34
F4 58 27 26 26 18 18 20 20 26
F5 54 30 38 29 26 23 15 15
F6 50 25 26 28 25 24 40
F7 57 30 17 20 17 23
F8 51 23 18 17 22
F9 54 24 7 25
F10 53 21 23
F11 57 25

Larger values indicate increased dissimilarity, for units see text. Column FC lists 11 different faces. IC,
distances between images of the same face, but under different illumination; VP, distances between images
of the same face taken from frontal and 17° side view; ‘pairs of faces’, distances between all 11 face pairs.
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Each face is compared to an image of the same face under a different illumination
(first column, marked ‘IC’, for illumination condition), to an image of the same face
viewed from a different direction (17° change in direction, column marked ‘VP’, for
viewing position), and then to ten other faces viewed under the original viewing
conditions. For example, for the first face, F1, a change in illumination induced a
difference measure of 59 units between the two images, and for a change in viewing
direction the difference measure was 25 units. (Units are the average difference
between normalized gray level images, other measures were also used, as discussed
below.) When this face image was compared with another face image, F2, the
difference measure was 21 units. This means that the changes induced by variations
in the viewing conditions were larger than the difference between the two indivi-
duals. In fact, for eight out of the ten face images, the differences due to viewing
conditions were the same or larger than the differences between distinct individuals.

One conclusion from these comparisons is that in this domain recognition based
on direct view-comparisons will result in severely limited generalization to viewing
direction and illumination. Suppose, for example, that we attempt to identify the
faces of just the limited set of 26 individuals in the study by comparing an input
image to a set of 26 images, one for each face, stored in memory, and then selecting
the stored image that most closely resembles the input image. The results show that
such a scheme will be highly inadequate: for the images in the face database, the
wrong answer will often be selected. For the best performing comparison scheme (of
a total of 107 tested) the error rates were above 20% for illumination changes and
about 50% for changes in viewing direction. These results were also compared with
the performance of the human visual system, using the same as well as additional
test images (Moses et al., 1996). It was found that the variations tested in the study,
as well as larger ones (up to 51° in viewing positions) were easily compensated for
by human observers.

Similar results were reached in a study by Liu et al. (1995). The study, described
in Section 5 below, also concluded that generalization to novel views cannot be
explained in terms of independent comparisons to stored views.

Taken together, these results indicate that the differences induced by changes in
the viewing conditions are large compared with the differences between different
individuals, and that direct image comparisons, even in combination with the pre-
normalization used for size, orientation, position, and intensity level, are not suffi-
cient for recognition. To obtain reliable recognition, some processes that can com-
pensate for the effects of viewing conditions are required. The nature of these
processes is a fundamental problem in the study of visual recognition. A review
of the main approaches to this problem, including the use of invariances and the
construction of object-centered structural description can be found in (Ullman,
1989, 1996). In this paper I will focus on an approach that compensates for the
effects of viewing directions by comparing the novel image with certain combina-
tions of previously stored views. The approach is somewhat similar to the direct
comparison scheme in that it is based on the comparison of picture-like representa-
tions. However, by using previously stored views not independently but in certain
combinations, significant generalization across viewing direction can be obtained.
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The discussion will focus on theoretical aspects of the scheme. Psychophysical and
physiological aspects of this approach are reviewed in Section 5.

2. The combination of object views

2.1. The view-combination property

In many recognition theories it is assumed that the visual system somehow stores
and manipulates 3D object models (Biederman, 1985; Lowe, 1985; Ullman, 1989).
When confronted with a novel 2D image of the object, the system deduces whether it
is a possible view of one of the already stored 3D objects. In contrast, the method
outlined in this section does not use explicit 3D models. Instead, it uses small
collections of object views directly, without the need to explicitly recover and
represent the 3D structure of objects.

In this approach, a 3D object is represented by the linear combination of 2D views
of the object. IfM = M1,…,Mk is the set of views representing a given object, andP
is the 2D image of an object to be recognized, thenP is considered an instance ofM
if

P = ∑
k

i =1
aiMi

for some constantsai.
The linear combination of views has the following meaning. Suppose that (xi, yi),

(xi′, yi′), (xi′′ , yi′′ ) are the coordinates of corresponding points (i.e. points in the image
that arise from the same point on the object) in three different views. LetX1, X2, X3,
be the vectors ofx-coordinates of the points in the three views. Suppose that we are
now confronted with a new image, andX′ is the vector of thex-coordinates of the
points in this new view. IfX′ arises from the same object represented by the original
three views, then it will be possible to expressX′ as the linear combination ofX1, X2,
X3. That is,X′ = a1X1 + a2X2 + a3X3 for some constants a1, a2, a3. Similarly, for they-
coordinates,Y′ = b1Y1 + b2Y2 + b3Y3 for some constants b1, b2, b3. In general, dif-
ferent coefficients will be required for thex andy components, and therefore the
total number of coefficients is six. In more pictorial terms, we can imagine that each
of the three pointsxi, xi′, xi′′ has a mass associated with it. The mass atxi, xi′, xi′′ is a1,
a2, a3, respectively (the same weights are used for all triplets). The linear combina-
tion of the points is now their center of mass. The linear combination property is
expressed by the following mathematical statement: all possible views of a rigid
object that can undergo rotation in space, translation, and scaling, are spanned by the
linear combinations of three views of the object.

The proposition assumes orthographic projection and objects with sharp bounding
contours. For objects with smooth bounding contours, the number of views required
is five rather than three. Objects with smooth bounding contours, such as an egg or a
football, require more views because the object’s silhouette is not generated by fixed
contours on the object. The bounding contours generating the silhouette move con-
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tinuously on the object as the viewing position changes. Finally, it should be noted
that, due to self occlusion, three views are insufficient for representing an object
from all orientations. That is, a different set of views will be required to represent,
e.g. the ‘front’ and the ‘back’ of the same object. For a proof of the proposition and
further details of its implications see Ullman and Basri (1991).

Fig. 1 shows an example of using linear combinations of views to compensate for
changes in viewing direction. Fig. 1a shows three different views of a car (a VW).
The figure shows only those edges that were extracted in all three views; as a result,
some of the edges are missing. This illustrates that reliable identification can be
obtained on the basis of partial image data (as may happen due to noise and partial
occlusion). Fig. 1b shows two new views of the VW car. These new images were not
obtained from novel views of the car, but were generated by using linear combina-
tions of the first three views. Fig. 1c shows two new views of the VW, obtained from
new viewing positions. Fig. 1d superimposes these new views and the linear com-
binations obtained in Fig. 1c. It can be seen that the novel views are matched well by
linear combinations of the three original views. For comparison, Fig. 1e shows the
superposition of a different, but similar car (a Saab), with the best matching linear
combinations of the VW images. As expected, the match is not as good. This
illustrates that the linear combination method can be used to make fine distinctions
between similar 3D objects in novel viewing directions. Although the two objects
being compared have complex 3D shapes, and are quite similar, they were reliably
discriminable by the view-combination method within the entire 60° rotation range.
To represent the object from a wider range of viewing directions a number of
different models of this type will be required. This notion is similar to the use of
different object aspects suggested by Koenderink and Van Doorn (1979). It is worth
noting that although the objects in this example are quite similar in shape, recogniz-
ing them reliably over a large range of viewing directions is a task mastered easily
by human observers.

Fig. 2 shows another example of a view combination, applied to a gray-scale
image. The two images in the top row are two input images of the same individual
from different viewing directions. The bottom row shows two images produced by
the view-combination method, depicting the same individual from different viewing
directions. One is an intermediate view, between the two original viewing direc-
tions, the other is an extrapolation beyond the range spanned by the original views.
The gray levels in the combined images were taken as the average of the correspond-
ing points in the original views, for a detailed discussion of combining views con-
taining gray-level information see Shashua (1992).

2.2. Using two views only

A novel object view was expressed in the scheme described above as the linear
combination of three fixed views of the object. The three views are necessary if the
transformations that the object is allowed to undergo are restricted to rigid transfor-
mations. In this case, the coefficients of the view combination are required to satisfy
certain functional constraints that can be tested to verify whether the object trans-
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Fig. 1. Using view-combination to match a novel view. (a) Three model pictures of a VW car for± 30°
rotations around the vertical axis. Only a subset of the edges were used in the model. (b) Two linear
combinations of the VW model. These are generated artificially by combinations of the first three views,
rather than actual views. (c) Real novel images of the car. (d) Matching the linear combinations to the real
images. The agreement is good within the entire range of± 30°. (e) Matching the VW model to pictures
of a similar car (Saab). (From Ullman and Basri, 1991; IEEE.)
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formation was indeed rigid (Ullman and Basri, 1991). It is natural to consider also a
more general case, in which objects are allowed to undergo more general distortions,
for example, some stretch along one dimension. For general linear transformations
of the object, it turns out that it becomes possible to use just two views of the object.
(This observation was also made independently by T. Poggio.) Unlike the three-
views formulation, this two-views formulation uses a mixture ofx andy coordinates.
This combination is somewhat less intuitive than the combination of three views, but
the use of only two rather than three views is sometimes more convenient.

Mathematically, this combination has the following form. Letx1 be the vector of
all thex coordinates of the points in the first view,x2 in the second, and̂x in the novel
view; y1 is the vector ofy coordinates in the first view. Then:

x̂=a1x1 +a2y1 +a3x2 (1)

For any novel view of the same object (subject to the usual self-occlusion limita-
tions), the set of new coordinatesx is the linear combination of corresponding
coordinates in the first two views. They coordinates can be expressed in a similar
manner:

ŷ=b1x1 +b2y1 +b3x2 (2)

In this version the basis vectors are the same for thex andy coordinates, and they are
obtained from two rather than three views.

Fig. 2. A view-combination of gray level face images. On the top row are the two basic images. Bottom
row: two view combinations, depicting the same person from new viewing directions. Left: an interpo-
lated view. Right: an extrapolated view, beyond the range spanned by the original views.

28 S. Ullman / Cognition 67 (1998) 21–44



2.2.1. A single view of a symmetric object
In reducing the number of base images, it is possible under some conditions to

take a further step, and perform image combination based on a single view. This
extension was developed by Vetter et al. (1994) for the class of bilaterally symmetric
objects. One intuitive way of looking at this special case of symmetric objects is by
considering the two symmetric halves of the object as two distinct views of a single
part. Under the assumptions discussed in the previous section (orthographic projec-
tions, affine object transformations), two views are sufficient to recognize the object
in question.

Vetter et al. (1994) have shown that for human observers the recognition of
symmetric 3D objects from a single training view is indeed better than for non-
symmetric objects. For the symmetric objects, the experiments showed a broader
generalization, that is, observers recognized the symmetric test objects correctly
over a wider range of rotations.

2.3. Using view-combinations for recognition

A straightforward way of using the linear combination method in practice is to
recover the coefficients of the combination, then use these coefficients to produce a
new model image and compare it with the input image. One method of recovering
the unknown coefficient is by using a small number of matching image and model
features. For example, by using three corresponding features points in the image and
the model, the coefficients can be recovered uniquely by solving linear equations
(two simple systems of three unknowns each, for thex andy components). Math-
ematically, the procedure is the following. LetX be the matrix of thex-coordinates
of the alignment points in the model. That is,xij is thex-coordinate of thejth point in
the ith model picture.px is the vector ofx-coordinates of the alignment points in the
image, anda is the vector of unknown combination parameters we wish to recover.
The linear system to be solved is then simplyXa = px. The combination parameters
are given bya = X−1px if an exact solution exists. We may use an overdetermined
system (by using additional points), in which casea = X+px (whereX+ denotes the
pseudo-inverse ofX, (Albert, 1972)). A similar procedure is used to recover the
coefficients in theYdirection. A convenient property of the scheme is that the matrix
X+ used to derive the unknown coefficients does not depend on the image and can
therefore be pre-computed and stored for a given model. Future recovery of the
coefficients simply requires only a multiplication ofpx by the stored matrix. Using
the recovered coefficients, an internal combined image will be generated and com-
pared with the viewed object.

This scheme is simple and efficient for an artificial recognition system. However,
for a biological system, it may not be straightforward to implement the required
processes, such as the matching of corresponding features, solving for the coeffi-
cients, or using them for generating internal images. There are alternative ways in
which the view-combination property can be used in the recognition process that I
will mention here only briefly.

One possibility is to use an iterative method that starts with one of the stored
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images and successively refines it by combining it with additional images (Lipson,
1993). This method requires only approximate contour matches rather than precise
pointwise matches between corresponding features.

An alternative approach is to use a ‘correspondence-less’ scheme that does not
rely on matching image and model features. This can be done by performing a search
in the space of possible coefficients. In this method, we first choose some initial
values for the set of coefficients, and then apply a linear combination to the model
using these values. We repeat this process using a different set of coefficients, and
finally choose the coefficient values that produced the best match of the model to the
image. The search can be guided by an optimization procedure, by measuring the
residual discrepancy between the model and viewed image, and using minimization
techniques to reduce this error. This procedure is similar to the approach taken by the
deformable template method (Yuille and Hallinan, 1992). The advantage of the
search approach is that it does not rely on the establishment of feature correspon-
dence between the image and a stored model. The main disadvantage is that the
search will typically require the generation and comparison of multiple internal
patterns. In computational experiments with this scheme (Ullman and Zeira,
1997),a total of several hundred intermediate patterns were generated in the course
of the recognition processes. For a biological system, performing in parallel multiple
pattern comparisons may have an advantage over the explicit recovery of the trans-
formation parameters. These considerations have discussed in more detail pre-
viously (Ullman, 1995, 1996).

2.4. Adding abstract descriptions

In the discussion so far we have treated object views in a simplified form. Object
models consisted of image contours and similar features, without defining larger
structures such as object parts, as used in the structural description approach to
recognition (Biederman, 1985),or using abstract descriptions, as in the invariant
properties approach (Ullman, 1989; Mundy and Zisserman, 1992). It is possible,
however, to combine the main advantages of the part decomposition and invariant
properties approaches with the view-combination approach. The resulting scheme is
likely to be more suitable for recognizing objects that cannot be handled easily by
the simpler method alone.

To illustrate how abstract descriptions might be used, suppose that one is trying to
recognize a familiar person with characteristic curly hair. In matching the novel
view with a previously stored model, the contours comprising the hair region are not
expected to match in detail. However, the corresponding regions in the model and
the image are expected to have similar textural properties. To compare the image
and model at a more abstract level, one can imagine a region descriptor, or ‘label’,
describing, for example, texture and color properties, being overlaid over the hair
region. This description is abstract in the sense that it is less specific than the original
image itself; many different images will map onto the single label (‘curly’ in this
case). When the internal model is manipulated and compared with the viewed
object, the detailed internal contours in the two will not be in close agreement,
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but they will both have the same label in corresponding locations. Abstractions of
this type can describe properties of 2D contours, but may also be 3D in nature, such
as convex or concave regions. It appears that the inclusion of multiple levels of
abstraction is an important future direction, that will make view-based schemes
more flexible and robust.

3. Class-based view combinations

In the discussion above we have seen how novel views of an object can be
recognized by combinations of a number of representative views. Although the
view-combination scheme allows a small number of stored views to deal with a
large range of novel viewing directions, it still requires, for each individual object, a
sufficient number of representative views. In contrast, it appears that the human
visual system can obtain substantial generalization on the basis of a single view of a
novel object. Single-view generalization can sometimes be based on the presence of
a distinctive feature, such as a scar or birthmark on a face. It appears, however, that
significant generalization from a single view can be obtained even in the absence of
such distinctive features. For example, a study by Moses et al. (1996), examined the
ability of human observers to generalize in face recognition to novel viewing direc-
tions and illumination conditions on the basis of a single example view. In this study,
subjects were presented with a single image of each of a number (three or more) of
individuals. They were later tested with additional images of the same individuals,
but under novel viewing conditions. The results showed almost error-free recogni-
tion across wide changes in viewing direction (51°) and illumination conditions (e.g.
left vs. right). Generalization was also tested for inverted face images. Recognition
of inverted faces is known to be more difficult than of upright faces. In this study,
however, the focus was not on the overall difficulty of the task, but on the ability to
generalize from one view to another. It turned out that for inverted faces, even after
training that made the training images easily recognizable and without error, gen-
eralization from a single view to novel conditions was limited.

Generalization from a single view was also examined in a study by Tarr and
Gauthier (1998) using a set of artificial objects. Subjects were trained with multiple
views of several similar objects. A novel object from the same general class was
shown under a single viewing direction, but tested with different views. They found
that the training objects, even a single similar object, could facilitate the recognition
of the novel object under the new viewing directions.

At an intuitive level, the results are perhaps not surprising. For example, observers
have seen in the past many different face images. Upon seeing a novel face image
illuminated from the right, say, the visual system might be able to use its past
experience to deal with the same face, only illuminated from the left. The question
then arises as to how prior experience with different objects in the same general class
might be used to facilitate the recognition of new individual members of the class.

Within the view-combination approach, such class-based generalization can be
obtained by using views of different objects instead of different views of the same
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single object. Mathematically, the main process proceeds as follows (for a fuller
description see Beymer and Poggio (1995) and Sali and Ullman (1998)).

Suppose that we have seen a number of objects, such as faces, where each of the
objects is seen under two different viewing conditions, that we will call ‘frontal’ and
‘non-frontal’. LetV1,...,Vk be the frontal views andU1,...,Uk the corresponding non-
frontal views. We now have a single frontal viewV′ of a novel object, and we wish to
predictU′, the appearance of the novel object in the non-frontal view, based on its
single view as well as the views of the other objects. We start by approximating the
novel frontal view as a combination of the frontal views of the otherk objects:

V ′ = SaiVi +D (3)

Vi are thek known views, ai are the coefficients of the combination that are chosen to
obtain the closest possible approximation to the novel view. The quantityD is the
residual error that can be significant, especially if the number of examples used is
small. To predict the new appearanceU′ we express it as a combination of the non-
frontal viewsUi with the same coefficients ai (Beymer and Poggio, 1995) and the
same residualD (Sali and Ullman, 1998):

U ′ = SaiUi +D (4)

This process can be used to obtain class-based generalization to changes in viewing
direction as well as illumination changes. An example is shown in Fig. 3, depicting
the result of this process applied to a novel face image on the basis of known face
images. In this example, generalization to a new viewing direction is obtained from
a single image of the novel object on the basis of three other objects in the same
class.

In most approaches to recognition, generalization is obtained based on informa-
tion associated with a single object. For example, in the view-combination approach,
different views of the same object are combined to deal with novel views of the
object in question. Similarly, in the structural descriptions approach, an object
description is constructed for a given object, independent of the descriptions of
similar objects. The discussion above illustrates that generalization in recognition
can be class-based rather than object-based. Computationally, class-based schemes
provide means for dealing with novel objects by using past experience with similar
objects. Psychophysically, it appears that such processes play an important role in
human object recognition. It seems, therefore, that class-based recognition is an
important direction for further study in both the theoretical and the empirical studies
of visual object recognition.

4. Extensions to the basic scheme

The image combination scheme outlined above is restricted in a number of ways,
and it will be of interest to extend it in several directions. One attractive extension
that will not be considered here is the use of object parts and partial views. The
scheme discussed so far used views of the entire objects. It may be advantageous,
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however, to use in a similar manner views covering only parts of the objects.
Another important issue is the problem of model selection. The discussion so far
has assumed that a candidate model has been selected, and the scheme evaluates the
agreement between this selected model and the viewed object. If many object
models are stored in memory, do we have to examine all of them in this manner,
or can we somehow focus on a smaller number of potential models? Other issues
include non-orthographic image views, non-linear image combinations, and dealing
effectively with occlusion. This section contains a brief discussion of recent progress
and future directions in these areas.

4.1. Perspective projections

The scheme as presented assumes rigid transformations and an orthographic

Fig. 3. Class-based generalization from a single view. Three face examples are shown above the hor-
izontal line, in both frontal and side views. Below the line: a novel face, frontal view (left), a non-frontal
view generated from the three examples and the frontal view (right). The view in the center is an actual
side view, for comparison.
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projection. Under these conditions, all the views of a given object are embedded in a
low-dimensional linear subspace of a much larger space. What happens if the pro-
jection is perspective rather than orthographic, or if the transformations are not
entirely rigid?

The effect of perspectivity appears to be quite limited. Ullman and Basri (1991)
applied the linear combination scheme to objects with a ratio of distance-to-camera
to object-size down to 4:1, with only minor effects on the results. Instead of using the
mathematically convenient approximation of orthographic projection it is also pos-
sible to perform image combination directly using perspective views. The view-
combination scheme provides a method for predicting a new view of an object based
on a model constructed from two or more corresponding views. Shashua (1995)
developed a similar method for perspective views. The direct use of perspective
views increases the accuracy of the reconstruction, but a larger set of corresponding
features (seven or more) is required.

4.2. Non-linear image combinations

As for non-rigid transformations and other possible distortions, an interesting
general extension to consider is where the set of views is no longer a linear subspace,
but still occupies a low-dimensional manifold within a much higher-dimensional
space. This manifold resembles locally a linear subspace, but it is no longer ‘globally
straight’. By analogy, one can visualize the simple linear combinations case in terms
of a 3D space, in which all the orthographic views of a rigid object are restricted to
some 2D plane. In the more general case, the plane will bend, to become a curved 2D
surface within the 3D space.

This issue of dealing effectively with lower-dimensional subspaces appears to be
a general case of interest for recognition as well as for other learning tasks. The
general reason can be explained by the following consideration. For recognition to
be feasible, the set of views {V} corresponding to a given object cannot be arbitrary,
but must obey some constraints, that may be expressed in general in the form
F(Vi) = 0. Under general conditions, these restrictions will define locally a manifold
embedded in the larger space (as implied by the implicit function theorem). Algo-
rithms that can learn to classify efficiently sets that form low-dimensional manifolds
embedded in high-dimensional spaces will therefore be of general value.

An elegant approach that can use general, non-linear combination of images, is
the radial basis functions (RBF) method, developed by Poggio and his collaborators
(Poggio and Edelman, 1990; Poggio and Girosi, 1990). This method uses non-linear
interpolation between 2D images for the purpose of recognizing 3D objects, as well
as for other tasks that involve learning from examples.

4.3. Occlusion

The problem of occlusion is an important issue in any theory of visual recogni-
tion. The recognition process must be able to deal with incomplete data, and to
distinguish between two sources of image-to-model mismatch: an incomplete match
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that results from occlusion, and mismatches that indicate the use of an inappropriate
model.

In the view-combination scheme, combined views consist of object points that are
visible in the generating views. Problems may arise, therefore, either because of self-
occlusions (when object points are occluded from view by the object itself), or
because of occlusion by other objects.

The problem of self-occlusion is handled in the view-combination approach by
representing an object not by a single model, but by a number of models covering its
different ‘aspects’ (Koenderink and Van Doorn, 1979). To cover the object com-
pletely, the main mathematical requirements are that each object point will be
visible from at least two views, and, roughly, that each view will have at least
four points in common (and with known correspondence) with two or more
views. The overall number of required views is not fixed, but depends on the object.
In practice, it was found that to distinguish between similar car models, for example,
typically ten views or fewer were sufficient.

As for occlusion by other objects, the method is somewhat less sensitive to this
problem than other methods such as the use of invariants or structural descriptions.
In the simplest version of using view combinations, a small number of correspond-
ing features are used to recover the coefficients of the combination. Occlusion will
not present a major difficulty to this method, provided that the visible part of the
object is sufficient for obtaining correspondence and thus for recovering the required
coefficients. After performing the view combination, a good match will be obtained
between the transformed model and the visible part of the object. The search method
mentioned above is the least affected by occlusion. When the correct parameters are
reached, a good match will be obtained between the model and the unoccluded part
of the object.

To deal effectively with occlusion, the matching function used by the scheme
must be able to distinguish between two different cases of a partial match between
the image and the model. Occlusion results in a close match, restricted to a part of
the object. The use of an inappropriate model can lead to some moderate agreement
over a large portion of the object. A close agreement over a sufficient part of the
object should therefore provide a stronger indication for the presence of an object
than an inaccurate match spread over a larger region.

4.4. Multiple models and the role of classification

Objects can be recognized at different levels of specificity. Sometimes they are
assigned to a general class, such as a ‘house’, ‘dog’, ‘face’ – classes that contain a
variety of objects, of many different shapes. Objects can also be identified as unique
individuals, such as someone’s house, or a particular friend’s face.

The scheme considered so far was aimed primarily at object identification. The
image combination scheme can distinguish well between individual objects, such as
two cars that have closely similar shapes. It will have a harder time, however,
classifying a new car, whose shape is not yet represented in the system.

Classification is an important problem in its own right. It is clearly useful to be
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able to classify a novel object as a car, or a person, and so on, even if we have not
seen the particular individual before. The ability to recognize objects at different
levels of generality is therefore an important aspect of recognition.

From the point of view of individual identification, classification can also serve a
useful role, particularly in dealing with large collections of stored objects. Classi-
fication can be used on the way to more specific identification in a number of ways.
First, classification can reduce the number of candidate object models. The view-
combination scheme discussed above assumed that a candidate object model has
been selected, and the task of the recognition system is then to compare the internal
model with a novel view of the object. When the number of object models is large, it
becomes desirable to reduce the number of candidate models and allow the system to
focus on the more likely object models. Classification can be useful in this process,
by directing subsequent processing to a restricted class of models. If the image can
be classified, for example, as representing a face, without identifying the individual
face, then subsequent processing stages can be restricted to face models, ignoring
models of other 3D objects.

Classification can also allow the recognition system to use class-specific informa-
tion in the recognition process. Different classes of objects can undergo some
characteristic transformations, for example, faces can be transformed by facial
expressions, that are specific to this class of objects. Following classification, infor-
mation regarding the relevant set of transformations can be used for the recognition
of a specific individual within the class. Finally, as we have seen in the discussion of
class-based view combinations, classification can help to generalize from limited
object-specific information.

Classification is therefore a useful intermediate stage within a recognition system
on the way to more specific identification. It restricts the set of candidate models,
allows the use of class-specific information, and makes it possible to perform
broader generalization by supplementing object-specific information with class-
based information. It appears that the problems of general classification – how it
is performed, and how it is related to more specific identification – will be important
issues in the study of visual recognition in the future. It also remains to be seen
whether classification can be performed by view-based methods, or whether more
abstract approaches, such as the use of structural descriptions, are required for this
task.

5. Psychophysical and physiological aspects

In this section I review briefly psychophysical and physiological findings that are
relevant to view-based recognition. The psychological and biological study of object
recognition is not an easy task, because recognition is likely to involve a range of
different and interacting processes. In an empirical setting, one can bias the recogni-
tion process to use different routes, by using different recognition tasks. For exam-
ple, if in a recognition test one of the objects has a unique distinctive feature, this
feature will often be used to distinguish it from other objects (Eley, 1982; Murray et
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al., 1993). Similarly, the distinction between a small number of highly different
objects will produce different results compared with the recognition of a larger
number of generally similar objects. In other situations, recognition may involve
reasoning about the object’s function rather than the direct use of visual cues (War-
rington and Taylor, 1978).

The findings listed in this section are not intended, therefore, to argue that view-
based mechanisms are used exclusively in visual recognition, but that they play an
important, perhaps a major part, particularly in the fast identification of individual
objects. It should also be noted that, given the current state of knowledge, it would
be premature to consider in detail specific mechanisms. The focus should therefore
be on the main underlying principles, for example, that the system stores a number
of different views of an object, and that these views are used collectively to com-
pensate for the variability across views.

5.1. Psychophysical evidence

A large body of psychophysical evidence has been accumulated regarding the
processes of visual object recognition. I will list here mainly recent findings that are
directly related to view-based recognition.

5.1.1. New views are more difficult than trained ones
A number of different studies have examined the dependence of recognition

performance on the viewing direction. In such studies an object is usually presented
at a single orientation, and recognition is subsequently tested with the object pre-
sented at novel 3D orientations. In many studies of this type it was found that
recognition performance decreased with the departure from the original, trained
orientation: the error rates typically increased, as well as the response time for
correct recognition (Jolicoeur, 1985, 1990; Rock and Di Vita, 1987; Corballis,
1988; Tarr and Pinker, 1989, 1991; Bu¨lthoff and Edelman, 1992; Edelman and
Bülthoff, 1992). In structural description as well as in variance-based schemes,
the precise view has no particular importance, since it is replaced during the proces-
sing by a view-invariant description. As long as the new view gives rise to the same
structural description, or has the same invariances, no significant effect of viewing
direction is expected. The findings are more consistent, therefore, with theories,
such as the image combination scheme, that use multiple 2D views directly in the
recognition process. For example, the RBF method, as well as some implementa-
tions of the linear combination scheme, will exhibit this superiority of the training
views.

It should be noted, however, that not all the studies in this area show the 3D
orientation effect. For example, Biederman and Gerhardstein (1993) found complete
invariance of their test objects to viewing position. The objects in this study were
designed to have a clear decomposition into a small number of simple parts, and this
design may have contributed to the difference between this and other studies. In any
case, the exact nature of the viewing position dependency is still a matter of some
controversy, and further studies will be required to clarify the issue.
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5.1.2. The difficulty persists when strong 3D cues are available
The dependence on viewing direction is present even when the object is seen in

both the training and subsequent testing under conditions that facilitate the recovery
of 3D shape, using stereo, shading, and motion (Edelman and Bu¨lthoff, 1992).
Overall recognition performance is somewhat improved under these conditions,
but the decrease in performance with departure from the trained conditions is not
significantly affected. A study by Sinha (1995) manipulated systematically 2D and
3D similarities and compared their effects on generalization in recognition. A train-
ing object was viewed in this study under good 3D viewing conditions. Subsequent
test objects were either similar to the training object in their 2D view, but with
different 3D structure, or similar in 3D shape but with a different 2D view. The
results indicated that generalization was determined primarily by similarity of
views, rather than of object-centered structure. These findings provide evidence
that the generalization process to novel conditions does not benefit significantly
from the availability of rich 3D information. In the view-combination approach,
generalization depends primarily on the availability of additional views. At the same
time, as noted in the theoretical discussion, additional 3D information can be used by
a view-based approach to improve the recognition of the trained views themselves.

5.1.3. Generalization improves with additional views
Recognition improves after training with additional object views (Tarr and Pin-

ker, 1989; Poggio and Edelman, 1990). A similar finding was also observed in
monkeys trained for object recognition (Logothetis et al., 1994). This is again
expected in the view-based approach, where generalization depends primarily on
the availability of a sufficient number of representative views. The fact that for
bilaterally symmetric objects generalization requires fewer views, and that good
generalization can be obtained on the basis of a single view (Vetter et al., 1994),
is also consistent with this point of view.

5.1.4. Better generalization to same-axis rotation
In a study by Bu¨lthoff and Edelman (1992) subjects were also presented with

multiple views of the same object; however, the views were all obtained by rotations
of the object about a fixed axis in the image plane, such as the horizontal or the
vertical axis. The generalization to novel views proved to be better for views
obtained by further rotations about the same axis, compared with rotations about
the orthogonal axis. This effect appears unexpected, except for the image combina-
tion approach. In this approach, combination of images obtained from rotations
about, say, the vertical axis, produce new images that are also constrained to rota-
tions about the same axis.

5.1.5. Recognition is better than an ‘ideal 2D observer’
The evidence listed above argues in favor of the direct use of object views in

recognition, but does not address the issue of using the views independently or in
some sort of view-combination scheme. A study by Liu et al. (1995) addressed this
issue by comparing recognition performance of human observers with what they
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termed a ‘2D ideal observer’. The ideal observer compares a novel object view with
all the previously seen views of the same object. The comparison is performed with
each of the stored views separately, as opposed to the use of view combinations.
They found that humans performed better than the ideal observer in generalizing to
new views, demonstrating that independent comparisons to stored views are insuffi-
cient to account for human recognition performance.

5.2. Physiological aspects

The primate visual cortex contains multiple areas, but not all of them appear to be
directly related to shape-based object recognition. A division has been suggested
between two main processing streams, a ventral stream leading from V1 to the
inferotemporal cortex (IT), where shape processing, leading to object recognition,
seems to take place (Ungerleider and Mishkin, 1982), and a more dorsal stream,
going to the parietal cortex, that may be related to object-directed action (Goodale
and Humphrey, 1998).

The notion that IT cortex is involved with object recognition is supported by brain
lesion studies, functional MRI (fMRI) studies, and by single cell recordings.
Damage to IT cortex can cause deficits in object recognition. More restricted lesions
usually affect mainly the precise identification of individual objects, and more
extensive lesions can also affect the ability to perform broader classification (Dama-
sio et al., 1990). Studies using fMRI techniques also indicate that these areas are
involved in shape processing and object recognition (Tootel et al., 1996).

Single-cell recordings in IT showed that the stimuli required to drive these cells
are often complex compared with those of lower-level visual areas. A particular
population of such cells, mainly in the STS region of IT, responds selectively to face
images (Perret et al., 1982, 1985; Rolls, 1984; Gross, 1992; Young and Yamane,
1992); other cells in a nearby region have been reported to respond to hand images.
Some of the face-selective cells respond best to complete face images, others prefer
face parts, such as the eye or mouth regions. In experiments performed by Logothe-
tis et al. (1995), where monkeys viewed novel wireframe and ameboid objects for an
extended training period, cells in IT developed specific responses to these novel
objects. Similar findings were reported by Miyashita (1988) after training with
fractal-like patterns. In addition to cells responding to complex and meaningful
stimuli, other cells in IT, especially the posterior region, have been reported to
respond to more elementary shapes and shapes that do not correspond to familiar
objects (Tanaka, 1996).

In considering the response of IT units to specific objects, it is worth noting that
shape-selective cells in IT often respond in a graded fashion, and will respond not
only to a single shape, but to similar shapes as well. Some units also respond to a
number of different shapes (Rolls et al., 1996). The shape of a specific object, such
as a face, may still be represented by such cells in the population response of a
number of cells. This may be a general principle of encoding of objects’ shapes, that
are represented by the combined activity of cells broadly tuned to different shapes,
as well as units tuned to different parts of the entire shape.
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5.2.1. Cells in IT are usually view-selective
Many IT cells show considerable selectivity in their responses when the stimulus

changes in size, position, color, and sometimes orientation in the image plane. In
terms of 3D viewing angle, most cells prefer a particular view of the objects. Some
cells show a selective response to an individual face, or an artificial wireframe
object, over a considerable range of viewing directions. At the same time, the
response is usually not entirely object-centered. In face-selective cells, for instance,
the selectivity does not cover the full range from frontal to profile view. The
response is typically optimal for a particular orientation and decreases gradually
for other orientations, but the decrease is sharper for some units and more gradual for
others.

A possible interpretation of the increased tolerance to viewing direction is that a
broadly-tuned cell receives converging input from a number of view-specific cells
(Logothetis et al., 1995). This convergence of views belonging to the same object
may be related to the view-combination approach; it may be a part of a biological
implementation combining different views of the same object, leading to a broader
generalization to novel views.

5.2.2. The response is determined by 2D similarity of views
The pattern of responses in IT to complex shapes appears to be consistent with the

general notion of multiple pictorial representations. An object appears to be repre-
sented in IT by multiple units, tuned to different views of the object. The response of
a face-selective unit, for example, to a given stimulus, appears to be governed by the
overall similarity between the stimulus and the unit’s preferred 2D pattern (Young
and Yamane, 1992). Similarly, the units studied by Tanaka (1996) and his colla-
borators appear to be governed by 2D similarity of the test view to the view preferred
by the unit. In these experiments, units were first tested using a large collection of
different 3D objects. When a unit responded well to a particular object, additional
attempts where made to characterize more precisely the effective stimulus for the
unit. Units were typically driven by particular 2D patterns, rather than, for example,
some preferred 3D shapes, regardless of their orientation in space.

5.2.3. Lesion evidence for the primacy of stored views
There is some evidence from animal lesion studies consistent with the notion that

the system uses as a basic mechanism a direct comparison to stored views, augmen-
ted by mechanisms that are responsible for aspects of generalization to novel views.

For example, damage to area V4 and posterior IT (Weiskrantz, 1990; Schiller and
Lee, 1991; Schiller, 1995) appears to affect especially the ability to compensate for
transformations such as size, orientation, or illumination changes. The animal’s
ability to recognize the original views usually remains intact after the lesion. In
the experiments carried out by Weiskrantz, monkeys were trained to recognize a set
of test objects, under particular orientation and illumination conditions. They were
then tested with the original objects as well as objects similar to the test objects
except for changes in scale, orientation in the image plane, and illumination. Lesions
to area AIT, the anterior part of IT, caused a general deterioration in recognition

40 S. Ullman / Cognition 67 (1998) 21–44



capacity. Lesions to the more posterior part of IT and some prestriate areas had a
more specific effect on the ability to recognize the transformed views. Recognition
of the original views were usually unaffected. Such results appear to support the
notion that the most basic form of recognition relies on the direct comparison of
stored views, as in the view-based approach, together with additional mechanisms
that allow the undamaged system to also go beyond the stored views, and generalize
to new ones.

6. Conclusions

A major problem in visual recognition comes from the fact that images of the
same object are highly variable. To deal with this variability, one general approach
has been to move away from the pictorial level and generate instead more abstract
and view-independent representations. The view-based approach outlined here
relies on the fact that the variability in the set of views belonging to a single object
is still governed by regularities that can be captured at the pictorial level.

In the scheme presented above, an object is represented for the purpose of recog-
nition by a number of its views, rather than, for instance, a single 3D object-centered
representation. The views comprising the representation of a single object are not
merely a collection of independent 2D object views. In the direct approach to recog-
nition, objects are also represented by multiple views, but recognition is based
simply on the best-matching individual view. In contrast, in the multiple views
approach a number of object views are used collectively in the recognition process.
The multiple views used to represent the object also include a known correspondence
between individual views. As was discussed above, a set of corresponding 2D views
provide a powerful and useful representation for the purpose of recognition. Without
using explicit 3D information, this representation contains detailed information
about the object’s structure, and this information is stored in a convenient form
for the purpose of the recognition process. The object views used in this approach
are not limited to simple images of the object. The use of abstract descriptions allows
the scheme to incorporate in addition more abstract pictorial representations.

The approach described above leaves several problems unanswered. Some of the
major ones listed in the paper include the use of abstractions, class-based recogni-
tion, and the problem of classification. These and other problems will require con-
siderably more research, both empirical and computational. In considering these
problems, it should be emphasized that recognition is probably more than a single
process; there may be many and quite different processes used by the visual system
to classify and identify visual stimuli. Object recognition may be analogous in this
respect to the perception of 3D space: the perception of depth and 3D shape is not a
single module, but is mediated by a number of interacting processes that utilize
various sources of information, such as binocular disparity, motion parallax, surface
shading, contour shape, and texture variations. Similarly, visual object recognition is
probably better viewed not as a single module, but as a collection of interacting
processes.
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Computational studies outlined in this paper show that significant aspects of
object recognition can be approached by using combinations of a small number of
object views. In examining the human recognition system it is worth keeping in
mind, however, the distinction between the mathematical formulation of particular
algorithms and the more general properties of the approach. The image combination
computation described above illustrates the approach; however, variations and
extensions of the scheme are possible. The general suggestion, based on the com-
putational studies, is that recognition by multiple pictorial representations and their
combinations may constitute a major component of 3D object recognition. Accord-
ing to this view, the brain will store for each object a small number of pictorial
descriptions, and the recognition process will involve the manipulation and some
combination of these views.
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